Сайт Лотоса » на главную страницу
домойFacebookTwitter

Энциклопедия
современной эзотерики

начало > Количество ...

А|Б|В|Г|Д|Е|Ж|З|И|Й|К|Л|М|Н|О|П|Р|С|Т|У|Ф|Х|Ц|Ч|Ш|Щ|Э|Ю|Я

Количество

Филос. категория, отображающая общее в качественно однородных вещах и явлениях. Чтобы выявить в них это общее, необходимо, во-первых, установить их однородность, т.е. показать, в каком именно отношении они эквивалентны между собою, во-вторых, выделить то свойство или отношение, по которому рассматриваемые вещи сравниваются, и абстрагироваться от др. их свойств. Поскольку количественная сторона мира стала прежде всего предметом исследования математики, то в дальнейшем филос. представления о К. связывались именно с результатами изучения тех видов или форм К., которые существовали в математике. Простейшей формой К. является целое положительное число, которое возникает в процессе счета предметов. Изучая отношения между числами натурального ряда, пифагорейцы первыми обратили внимание на то, что такие отношения определяют закономерности между свойствами предметов внешнего мира. Однако открытие несоизмеримости диагонали квадрата с его стороной вызвало глубокий кризис в пифагорейской школе. Хотя в дальнейшем это противоречие было формально преодолено остроумной теорией пропорций Евдокса, оно и в дальнейшем продолжало оказывать влияние на обобщение и развитие понятия числа.


Первое развернутое определение К., явно ориентированное на опыт др.-греч. математики, было дано Аристотелем: «Количеством называется то, что может быть разделено на части, каждая из которых, будет ли их две или больше, есть по природе что-то одно и определенное нечто. Всякое количество есть множество, если оно счислимо, и величина, если измеримо». Это определение в тех или иных вариациях повторялось др. философами и до сих пор не потеряло своего значения, хотя в нем недостаточно ясно выражена связь между К. и качеством. Различие между предметами и явлениями уже на уровне чувственного познания непосредственно отображается с помощью свойств, которые выражают отдельные их особенности, признаки и отношения. Сравнение и измерение свойств и отношений предполагает выделение качественно однородного и одинакового в вещах, а именно эквивалентных их свойств и отношений. Поскольку первичным в познании является ощущение, ав нем неизбежно содержится качество, то анализ К. начинается именно с выявления качественно однородных свойств вещей. Эти свойства, называемые величинами, можно сравнивать или измерять. В первом случае между ними устанавливается отношение, выражаемое терминами «больше», «меньше» или «равное». Во втором — выбирается определенная общая единица измерения (напр., длины, массы, температуры и т.п.), и значение соответствующей величины определяется ее отношением к единице измерения, т.е. числом (целым, дробным или даже иррациональным).


Поскольку важная цель познания заключается в открытии законов, выражающих инвариантные, регулярные связи между величинами, характеризующими определенные процессы, постольку количественные связи отображаются с помощью различных математических функций. Если с помощью элементарной математики можно было изучать отношения между постоянными величинами, то с введением переменных величин стало возможным исследовать разнообразные функциональные отношения, а тем самым математически отображать движение и процессы. Создание дифференциального и интегрального исчислений дало в руки ученых мощное средство для исследования различных процессов. В дальнейшем математика создала еще более эффективные методы функционального анализа, а затем перешла к исследованию более общих абстрактных структур и категорий, среди которых анализ величин занимает весьма скромное место, хотя в прикладных исследованиях по-прежнему он продолжает играть важную роль. Не случайно поэтому иногда математику определяют как науку о косвенных измерениях величин.


Бурбаки Н. Очерки по истории математики. М., 1963; Карнап Р. Философские основания физики. М., 1971; Тимофеев И.С. Методологическое значение категорий «качество» и «количество». М., 1972; Аристотель. Метафизика // Соч. М., 1975. Т. 1; Колмогоров А.Н. Математика // Математический энциклопедический словарь. М., 1988.


Г.И. Рузавин


Источник: «Философский энциклопедический словарь".
Используемые сокращения.


Страницы, ссылающиеся на данную: К
ФЭСК
ФЭСПолноеСодержание

Энциклопедия Современной Эзотерики: к началу


 

 

 


Новости | Библиотека Лотоса | Почтовая рассылка | Журнал «Эзотера» | Форумы Лотоса | Календарь Событий | Ссылки


Лотос Давайте обсуждать и договариваться 1999-2019
Сайт Лотоса. Системы Развития Человека. Современная Эзотерика. И вот мы здесь :)
| Правообладателям
Модное: Твиттер Фейсбук Вконтакте Живой Журнал
Рейтинг@Mail.ru Rambler's Top100