Сайт Лотоса » на главную страницу
домойFacebookTwitter

Энциклопедия
современной эзотерики

начало > ЛогикаВысказываний ...

А|Б|В|Г|Д|Е|Ж|З|И|Й|К|Л|М|Н|О|П|Р|С|Т|У|Ф|Х|Ц|Ч|Ш|Щ|Э|Ю|Я

Логика высказываний

Раздел логики, в котором изучаются истинностные взаимосвязи между высказываниями.


В рамках данного раздела высказывания (пропозиции, предложения) рассматриваются только с т.зр. их истинности или ложности, безотносительно к их внутренней субъектно-предикатной структуре. При этом многообразие всех возможных отношений между высказываниями анализируется на основе трех базовых отношений — отрицания, конъюнкции и дизъюнкции, а также производных от них отношений импликации, эквивалентности и некоторых др. Данные отношения обозначают с помощью специальных формальных символов — пропозициональных логических операторов (пропозициональных связок). В современном логическом языке в качестве пропозициональных связок обычно используются следующие символы: оператор отрицания «]», оператор конъюнкции «&»,оператор дизъюнкции «V», оператор импликации «—>» и оператор эквивалентности «<—>». В естественном языке смысловыми аналогами этих операторов являются, соответственно, частица «не», союз «и», союз «или», связка «если.., то...» и связка «...если и только если...». Точный логический смысл пропозициональных связок задается с помощью истинностных таблиц, в которых любому высказыванию (вида А, ] А, А&В, Av B?, A—>B, ] (А&В), Av] В и т.д.) приписывается свойство быть истинным высказыванием, либо свойство быть ложным высказыванием.


Л.в. является, с одной стороны, содержательной теорией, отражающей истинностные взаимосвязи между смысловыми значениями высказываний, а с др. стороны — логическим исчислением, выражающим синтаксические связи между самими высказываниями. Наиболее распространено классическое исчисление высказываний,в котором из конечного числа аксиом по специальным правилам вывода могут быть получены все общезначимые формулы Л.в., выражающие соответствующие логические законы. Первый содержательный вариант Л.в. был предложен еще в период античности в логико-философской школе стоиков, возглавлявшейся Хрисиппом. Значительно позже, в 19 в., англ. логиком Дж. Булем был предложен теоретико-множественный вариант Л.в., известный под названием «алгебра логики», или «Булева алгебра». Л.в. — основополагающий раздел современной логики, имеющий широкое применение в различных сферах интеллектуальной деятельности человека. Вместе с тем, поскольку в Л.в. не учитывается субъективно-предикатная структура высказываний и ряд др. содержательных положений, с ее помощью нельзя адекватно формализовать значительную часть содержательных рассуждений, используемых человеком. Для этих целей дополнительно к средствам Л.в. используются средства логики предикатов и металогики.


Источник: «Философский энциклопедический словарь".
Используемые сокращения.


Страницы, ссылающиеся на данную: Л
ФЭСЛ
ФЭСПолноеСодержание

Энциклопедия Современной Эзотерики: к началу


 

 

 


Новости | Библиотека Лотоса | Почтовая рассылка | Журнал «Эзотера» | Форумы Лотоса | Календарь Событий | Ссылки


Лотос Давайте обсуждать и договариваться 1999-2019
Сайт Лотоса. Системы Развития Человека. Современная Эзотерика. И вот мы здесь :)
| Правообладателям
Модное: Твиттер Фейсбук Вконтакте Живой Журнал
Рейтинг@Mail.ru Rambler's Top100